If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36x+105=0
a = 1; b = 36; c = +105;
Δ = b2-4ac
Δ = 362-4·1·105
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-2\sqrt{219}}{2*1}=\frac{-36-2\sqrt{219}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+2\sqrt{219}}{2*1}=\frac{-36+2\sqrt{219}}{2} $
| -27=-6n+3 | | 600+2x=480+1x | | 7x-(3x-9)=21 | | f=327 | | 5(-2x+3)-6(2x-1)=-23 | | -7x-27=8-9x-190 | | x+2x+10+2x=10.00 | | 5a+8=-10+3a | | 5+m/15=6 | | x+38=14 | | -5n-7=48 | | m-4.2=5.1 | | 5+14x=9x-55+14x=9x−5 | | 5u+72=13u | | 4q+6=10 | | u=42-6u | | 21+18a=35+11a | | 5{4z}-1/2z=234 | | -5+3x+14=-12 | | 8+5y=9y | | 91=-(-7x-3)+4x | | 40x+70=30x+100 | | 35=5x-10+-24 | | 38=-7k-4 | | 1/4×n=11 | | -2x(x-5)+5=35 | | 11=4+-3k | | 6-p=1 | | 2+3x7=14 | | x+.45x=15 | | -5=x/3+1 | | -58=x/6 |